Skip to content

AI Modules

PolinaOS runs on a multi-agent AI system. Each agent is specialized and communicates through structured JSON outputs and verifiable pipelines. Together they form the closed-loop intelligence layer that powers task automation and reward allocation.


AI researcher & context builder

  • ๐Ÿ“ก Context Loading โ†’ Scrapes Twitter timelines, contract mentions, on-chain events. โ†’ Uses Puppeteer + RPC clients to rebuild the projectโ€™s narrative landscape.

  • ๐Ÿ—‚๏ธ Knowledge Memory โ†’ Pulls past missions + contributor data from PolinaOS DB. โ†’ Enables incremental analysis (no re-learning from scratch).

  • ๐Ÿ“Š Signal Collection โ†’ Finds top tweets, memes, influencer replies, engagement baselines. โ†’ Detects abnormal attention spikes via statistical thresholds.

  • ๐Ÿงพ Project Understanding Generation โ†’ Outputs structured JSON:

    {
    "strengths": [...],
    "weaknesses": [...],
    "activation_opportunities": [...]
    }

    โ†’ Feeds into Creator Agent.


AI task designer, optimized for Twitter virality

  • ๐ŸŽฏ Mission Framing โ†’ Selects high-value tweets/narratives for amplification. โ†’ Uses contextual embeddings to detect โ€œshill-worthyโ€ content.

  • ๐Ÿ“ Task Design โ†’ Generates prompts with hashtags, media, reward rules. โ†’ Embeds cultural priors (CT memes, slang, timing windows).

  • ๐Ÿ“ฆ Dynamic Packaging โ†’ Outputs tasks in schema:

    {
    "objective": "...",
    "deadline": "...",
    "kpis": ["views", "engagements"],
    "tiers": ["basic", "advanced", "viral"]
    }
  • ๐Ÿ”„ Adaptive Iteration โ†’ Monitors early submissions. โ†’ Auto-generates A/B variants of prompts for higher engagement.


Autonomous evaluator & reputation engine

  • โœ… Task Matching โ†’ Uses semantic search + regex/rule validation. โ†’ Verifies tweet/post contains required hashtags, media, timing.

  • ๐Ÿงฎ Effort & Originality Scoring โ†’ LLM-powered analysis of tone, length, novelty. โ†’ Penalizes template spam & rewards authentic, thoughtful content.

  • ๐Ÿšซ Sybil & Spam Filtering โ†’ Cross-checks:

    • Wallet activity (on-chain)
    • Twitter history
    • Submission duplication โ†’ Blacklists repeated farming patterns.
  • ๐Ÿง  Reputation Memory โ†’ Maintains contributor history:

    • score_total
    • score_avg
    • sybil_flags โ†’ Adjusts reward weighting dynamically.
  • ๐Ÿ“ค Output Schema

    {
    "contributor": "0x...",
    "task_id": "12345",
    "score": 87,
    "flags": ["sybil_suspected"],
    "notes": "Low effort retweet"
    }