AI Modules
PolinaOS runs on a multi-agent AI system. Each agent is specialized and communicates through structured JSON outputs and verifiable pipelines. Together they form the closed-loop intelligence layer that powers task automation and reward allocation.
1. ๐ง Analyst Agent โ Polina
Section titled โ1. ๐ง Analyst Agent โ PolinaโAI researcher & context builder
-
๐ก Context Loading โ Scrapes Twitter timelines, contract mentions, on-chain events. โ Uses Puppeteer + RPC clients to rebuild the projectโs narrative landscape.
-
๐๏ธ Knowledge Memory โ Pulls past missions + contributor data from PolinaOS DB. โ Enables incremental analysis (no re-learning from scratch).
-
๐ Signal Collection โ Finds top tweets, memes, influencer replies, engagement baselines. โ Detects abnormal attention spikes via statistical thresholds.
-
๐งพ Project Understanding Generation โ Outputs structured JSON:
{"strengths": [...],"weaknesses": [...],"activation_opportunities": [...]}โ Feeds into Creator Agent.
2. โจ Creator Agent โ Lara
Section titled โ2. โจ Creator Agent โ LaraโAI task designer, optimized for Twitter virality
-
๐ฏ Mission Framing โ Selects high-value tweets/narratives for amplification. โ Uses contextual embeddings to detect โshill-worthyโ content.
-
๐ Task Design โ Generates prompts with hashtags, media, reward rules. โ Embeds cultural priors (CT memes, slang, timing windows).
-
๐ฆ Dynamic Packaging โ Outputs tasks in schema:
{"objective": "...","deadline": "...","kpis": ["views", "engagements"],"tiers": ["basic", "advanced", "viral"]} -
๐ Adaptive Iteration โ Monitors early submissions. โ Auto-generates A/B variants of prompts for higher engagement.
3. ๐ฏ Scoring Agent โ Zero
Section titled โ3. ๐ฏ Scoring Agent โ ZeroโAutonomous evaluator & reputation engine
-
โ Task Matching โ Uses semantic search + regex/rule validation. โ Verifies tweet/post contains required hashtags, media, timing.
-
๐งฎ Effort & Originality Scoring โ LLM-powered analysis of tone, length, novelty. โ Penalizes template spam & rewards authentic, thoughtful content.
-
๐ซ Sybil & Spam Filtering โ Cross-checks:
- Wallet activity (on-chain)
- Twitter history
- Submission duplication โ Blacklists repeated farming patterns.
-
๐ง Reputation Memory โ Maintains contributor history:
score_total
score_avg
sybil_flags
โ Adjusts reward weighting dynamically.
-
๐ค Output Schema
{"contributor": "0x...","task_id": "12345","score": 87,"flags": ["sybil_suspected"],"notes": "Low effort retweet"}